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Abstract—Plane wave reflections at the free surface of a half-infinite elastic space are examined
assuming long-range action of cohesive forces, and a grazing incidence of the waves. Using Kroener-
Eringen constitutive equations, nonlocal elastic moduli are determined. and the difference-differ-
ential equations of motion for the displacement potential functions established. Satisfaction of the
homogeneous boundary conditions determines the ratios of the amplitudes of the incident and
reflected waves. A more detailed analysis of the grazing incidence of P-waves in a nonlocal medium
conlirms the existence of the Goodier - Bishop waves in the entire Brillouin frequency zone. at least
for three ditferent ranges ot the particle interactions, and some experimental data available.

[. INTRODUCTION

As commonly known, the conventional theory of elasticity is remarkably successful in its
predictions of the way material bodics respond to the action of external agents such as
mechanical and clectromagnetic forces and heat. Strangely enough, this is so not-
withstanding the fact that the model of bodies accepted by the theory is such an abstraction
as a plain continuous medium. And yet there are situations, few to be exact, in which the
conclusions of the theory do not agree with experimental evidence, or come in contlict with
our understanding of the real workd.

Two relevant examples come to mind here. First, failure of classical clastodynamics to
predict the dispersion of waves traveling in unbounded and semi-bounded media, a fact
well established by actual observations. Sccond, the conclusion hardly compatible with the
common sense that the stress concentrations at the tips of cracks and at the cores of
dislocations become unbounded.

There were several endeavors in recent years of workers in mechanics to circumvent
the difficultics encountered in the classical theory. One of these, of interest in the present
note, gave birth to a new theory of clasticity, more gencral than the old one and called
nonlocal.

The nonlocal theory differs from its classical counterpart in that it disputes the validity
of the orthodox assumption that the cohesion forces binding the matter together ure contact
forces whose range of action is infinitesimal. Instead of this, the new theory accepts as
relevant the firmly established findings of atomic physics, and asserts that the particle
interactions are long-range forees that extend. at least in principle, over the entire body. It
is important to note that due to the new approach the nonlocal theory is able to revise some
of the questionable conclusions of the old theory; and so, for example, contrary to the
above-mentioned classical prediction, the wave motion in nonlocal unbounded and semi-
bounded media is found to be dispersive (Eringen, 1976 ; Nowinski, 1984a). Likewise, the
singular points in cracks and dislocations become regular points (Ari and Eringen, 1983 ;
Eringen, 1977), and by an appropriate definition of the concentrated force it is possible to
predict a finite stress at the point of application of the force (Wang, 1988).

In the present note. we intend to shed some light, however limited. on another somewhat
enigmatic qucstion of existence of the undulatory motions known as Goodier-Bishop waves
(Goodier and Bishop. 1952). The waves so named represent surface waves whose amplitude,
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strange as it is, increases (linearly) with an increasing distance from the surface. On account
of this, the intensity of the waves at infinity becomes unbounded. This fact makes the
phenomenon at odds with the natural St Venant requirement that a disturbance produced
by the agencies acting in a finite domain should vanish at infinity. If this is so, one is tempted
to suspect that perhaps the whole idea of the Goodier-Bishop waves has a purely formal
character, and comes from the inadequacy of the postulational basis of the classical theory.

If such be the case, it seems both interesting and informative to inquire what can be said
about the problem in question in the context of the nonlocal theory. that successfully
clarifies other difficulties of the classical line of approach.

Proceeding in the desired direction, we first establish the nonlocal elastic moduli using
the Eringen-Kroener form of the constitutive equations. We next arrive at the difference-
differential equations of motion in terms of two displacement potential functions, and find
the solution satisfying the boundary conditions of zero external tractions. A more detailed
analysis of the grazing incidence of P-waves seems to confirm the reality (in the theory at
least) of the Goodier-Bishop waves. This happens for three different ranges of cohesive
interactions with due regard to the available experimental data.

It is worth noting that the Goodier-Bishop waves in their nonlocal aspect become possible
for all admissible lengths in the Brillouin zone. In the classical theory, on the other hand.
they exist only as very (infinitely) long waves.

2. AN AUXILIARY PROBLEM

As a preparation for the solution of the title problem, we examine the following
auxiliary problem.
Let a plane tongitudinal wave propage in an clastic infinite space with nonlocal propertics
in the direction of the xp-axis of a Cartesian rectangular reference frame x,, x,, vy, With
the only identically non-zero displacement component,

=1, (N 1), (n

there is associated, within the framework of a lincar theory, the only non-zero strain
component,

¢y =0U|/0.\'|. : (2)
We take the constitutive equation of the matter filling the space in the form proposed by

Eringen (1972) on the basis of a general theory of constitutive equations. In the present
case we have

LT R I g;_t;(lx—x’l)+/'-’(!x—.\"l)Dt_t]dv, G)
Qu+4 I R 2+ 4 ox,

where g and 4 are Lamé's constants, u” and 4" are the nonlocal moduli (here kernel influence
functions), x = (x,, X., X;) is the point under observation, x* a generic point of the medium,
de’ the volume element of the medium, and the prime designates (here and later) quantities
at the point x’. Inasmuch as the functions do not depend on the coordinates x5 and xj,
then by the argument of Edelen in Nowinski (1984a, Appendix) there is no dependence on
the coordinates x, and x;. and the three-dimensional problem under discussion reduces to
the one in one dimension. One may then write

oy

sl = J R =D+ =3 o d )

By appeal to the Fourier exponential transform.
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a(k.1) = J uy(x,, 1) e rdxy,

-x

-7

u(x,.1) = %f i (k.t)e *o dk, 6]

and to the one-dimensional Faltung theorem we arrive at the equation

T l(\‘l_-_’)

T k=S T (k) e e dk. (6)

2+ 4

j" L2 (k) + (k)
N

The equation above introduced into the only identically non-vanishing equation of motion,

o] a2

T ( 1}

7! —p- ——~| =0, N
(.Vl ([-

leads. by means of the separable representation
i (k1) = uy(k)c. (7a)
to the dispersion equation of the nonlocal continuum theory,

G 27 (k) + £ (k)
=/ - .

2u +i (8)

—ta

where ¢ = w/k is the actual wave speed in its nonlocal aspu.l w and k are the frequency
and the wave number, respectively, and ¢, = [(2u+4)/p]' ¥ is the speed of the longitudinal
witves in an infinite space according to the conventional theory. Clearly, the nonlocal theory
implics that the elastic waves depend on the wave number (respectively, on the wave length,
A = 2r/k), so that the waves turn out to be dispersive. This agrees with the experimental
evidence, but contradicts the conclusions of the classical elasticity. It should, of course, be
recalled that the classical theory of elastic waves agrees essentially with observations as
long as the wavelength is large enough as compared with the average atomic distance. As
the wavelength decreases, effects of the discrete structure of bodies become more and more
pronounced, and it is the objective of the nonlocal theory to account for these effects. To
achieve this, 4 normal procedure of the nonlocal theory consists of establishing some kind
of correspondence between the continuum theory and the atomic theory. There are several
possibilities to secure the desired connection [see, e.g. Leibfried (1955, p. 185)]. One of these
consists of the identification of the dispersion equation furnished by the nonlocal elastic
theory [cf. eqn (8) above], which is assumed to be valid for waves of all lengths, with the
corresponding equation derived in the Born-von Karmin atomic lattice dynamics. The last
named equation retains its validity for waves of all lengths, and has the following form [see,
c.g. Kittell (1967, p. 143)] for a monoatomic lattice:

Z C,(1 ~cos nka). (9)

nl

AI

Here A is the mass of an atom, «¢ is the atomic spacing, and the C,s are the constants
determining the forces, with which the atom under observation (at the location n =0) is
acted upon by the planes of atoms removed by na. Setting M = pa®, where p stands for the
average atomic mass density, and combining eqns (8) and (9) gives



426 J. L. Nowinski

- . . [ nka
gk L Sy .
du+s+  2nm 2 . (10)

QutA)a =

We note that the range of the wave number & is here as broad as

n
--<k< (10a)
a a

and is being referred to as the first Brillouin zone.t This permits the length of the waves to
viry between two atomic spacings. 2«. and the infinity (24 € A < ) in contrast with the
continuum theories in which & may tend to infinity and A to zero.

It is a straightforward matter to invert eqn (10) by means of a table of Fourier
transforms {see. e.g.. Magnus and Oberhettinger (1948)]. We then obtain

(=

e =i+ A = o () Il (I
Q44 Qu+i= "a? na
where
v, — XY < na. (12)
and n=1.2,..., N, respectively. Outside region (12), the right-hand side of egn (11)
becomes equal to zero. We note that the expression
: o | lvy =X
de(x, —x) = 1- (13
Ha na

in eqn (1) constitutes a term of a delta sequenced since the integral of 3y taken over the
interval — 2 < x|} < % is equal to 1, and morcover if ¢ — 0 then 34 — .

Suppose now that in (11) one sets N = | and writes the constitutive eqn (1) in the form
appropriate lor the case in question, namely

C, {7 Cu(xy)t) .
T t) = “l‘j ("“(\I"”')'().s'(-ﬁ"-\'Il)d-\"l- (14)

ox’

Inasmuch as for ¢ — 0 the term d4(v, — 7)) tends to the delta function, d(x— x’) then
by the well-known substitution property of the delta function the equation above tends to
the himit

(15)

C, Culx,.t
Ty, ) = - ! o ‘I .),'

u AW

In the limit, however, the nonlocal theory transtorms into its classical counterpart, so
that eqn (15) expresses a trivial Hooke's law 1, = (2u+2) cu/cx,.
A comparison of the two preceding cquations gives immediately that

+ Confining the wave number to the first Brillouin zone removes the ambiguity in the wavelength cor-
responding to the given frequency.

t We recall that, speaking crudely, a delta sequence is a sequence of indexed functions the limit of which
for the index tending to inlinity is a Dirac delta function.
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with u and /4 as Lamé’s constants.
With all the preliminaries out of the way, we now focus on the examination of the title
problem : this is done in the subsequent section.

3. GENERAL EQUATIONS

We now return to our title problem. and suppose that the surface of an elastic isotropic
homogeneous and nonlocal half-infinite medium coincide with the x,.x;-plane of a rec-
tangular Cartesian coordinate system x,. x,, X;, with the x,-axis pointing towards the
interior of the medium (Fig. 1).

Let a plane harmonic wave (a longitudinal. P-wave, say) propagating in the k/k direction
[Ik| = k& = (k. k)] strike the boundary x. = 0 at the angle ¢, (respectively e,. for a transverse
wave, SV). The trace of the wave front in the plane x, = 0 is L. and the reflected waves
consist of the longitudinal, P’-wave, and the transverse, SV'-wave.

The constitutive equation of the nonlocal medium in the considered plane strain two-
dimensional problem takes the form

() = J Ric(lx—=xDe (3" )+ 2 (Je — e (XL £)d,, ] d, (17)
A

where i, j = 1,2, x = (x,.x;). 1, is the stress tensor, ¢, = Y, , +u,,) is the strain tensor,
w = (u,,u;) is the displucement vector, ¢ is the time, and A is the arca of the cross-section
x; = () of the medium.

In order to pass from the one-dimensional problem discussed in Section 2 to the two-
dimensional in hand, we wish to make the following assumptions.

We select the nonlocal moduli in a separable form using the designation

Fy(lx, =31 - Gollxg = xi))s (18)
where i,k = 1,2, and i # k.

Guided by the result (10) we seek the function Fy in a form similar to (11), namely

d "’ fx,x]|
E (e — ') = Al -y
[‘A\(;'\‘ '\1') Z Cn a (I na )w (19)

=

where i = 1,2, and the coeflicients C4? are denoted in the following by C4¥ or C* depending
on whether the function Fy is associated with the modulus 2° or u’, respectively.

Fig. 1. Geometry of the problem.
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We take advantage of the generality of the principle of attenuating neighborhoodt and
identify the function Gg({x,—x;|) with a term d5(x, —x;) of an appropriate chosen delta
sequence.

As regards the functions of the sequence we adopt the simplifying assumption that the
functions possess the familiar shifting property characteristic of the Dirac function; as a
consequence, for any sufficiently regular function f(x;}) there is

f S 0s(x,—x) dx] = f(x,). (20)

withi=1,2and §=1.2.3..... This relation becomes. of course. the more exact the higher
the value of the index §.

Finally, we decide to associate in expression (18) a pair of indices i= 1,k =2 (i = 2,
k = 1) with the increments of the displacements in the x,-direction (x,-direction).

This brings us back at last to the main line of the argument. We invoke the standard
representation of the displacements in terms of a pair of potential functions ¢(x,, x,.¢) and

|//(,\'|.x;.t),
=@+ U= -y, (2n

Substitution of the above into the equations of motion yields

A+ , L, 1 ..
L ;‘Iéi[(‘/)'l 1@l dyidyy = o ¢, (22)

and a similar cquation for the function ¥, provided ¢f = (A+2u)/p is replaced by
¢i = u/p, and (A +20°)/(A+20) by g/t respectively.

We combine egns (21) with eqns (22), respectively, and arrive at the following ditfer-
ence-differential equations for the function ¢ :

N C :'i + 20

)

| W [dCes +na, x1, 1) +Pp(x), X3+ na, 1) —4p(x|, X2, 1)

+¢(x| —"aixlst)+¢(xhx2—na$ t)] = (Tlf‘.b.(xhxlsl)a (23)

and a similar equation for the function ¢ with (44 u) replaced by g, and c¢i by ¢3 = y/p.
We cast the functions ¢ and ¢ in the obvious forms,

¢ - Alei(kr‘i‘kl"l":‘“’”+A:e'“‘r"l*klél"!“"”,

l/l = B| cl(k,,n«k_.ﬁ:.t:—ml)+B’ euk,.r,+k:.i_»\-:-mu. (24)

The functions above satisfy the governing equations such as (23), provided

(25)

= 2 3

w ¥ 4C,,(i.+2;t)<, LJkyna | ,k;na) 0
= . n? -5 =0,
i L5 (A+2ud’t 2 2

With k: = k|(§|. lll"ld

+ According to the principle proposed by Eringen (1962). and based on actual observations. the interactions
between particles decay rapidly with an increasing distance between them. Practically. the range of cohesion forces
may include 15 interatomic distances and be of the order of 10-7 cm.
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2 N
w* Y 4C, .. kina . ,kina
. (sm- L= tsin® —2— | =0, (26)
('5 n=1 d” - -
with k. = k3. It is easily verified that
tane, = —9,, tane,= —J., tane; =9,., tane,=9,, o))

(cf. Fig. 1), and that eqns (25) and (26) reduce to the classical equations if a =0, n = 1,
CYy** = (A+2u)a, and C¥ = pa: that is, if the nonlocal medium becomes converted into
the conventional. local. one [see. e.g. Ewing er al. (1957, p. 26)]. In this case also the
coefficients of the closest neighboring interactions, C'¥***" and C, reduce to the cor-
responding Lameé’s constants (according to the already mentioned correspondence principle
of the lattice dynamics [see. e.g. Kittel (1967, p. 147) ; Eringen (1962. p. 248)].

With all the above in mind we write the equations of the stress components of interest,
7. and 1., as

Y4 Lk 1 . Lk
ta(x X0 t) = ): FC::'”{(Ald’l-A:d’:)(él sin'—gg-g-—-sm-_‘__"z)

n=1 - 6! 2
. ’Ik A 5’k
+(B.¢.+B;¢:)(sm' 9 _sin 22 .na)}’
2 2
A 4 ,5»/\' . ,k
talvnxnt) ==Y - {CL“’(A.(I),«#A:(!):)(sin' 2 Gt ,nu)
n=| a 2 2
X Lk 1 T 2Y <
— (B~ B )| €D, sint T - D gl win? m-”'-—")} (28)
2 o 2 ;
where
(pl = ci(k|\'| -klgi‘f:‘llll)‘ (P" = ci(klrld-lt'(i..r:-ml).
lp| = cilk,,\'|»klui_a!—u:t)‘ l/l: = ei(k,x,#-k,d_.x:—ml). (29)

In preparation for the discussion of the Goodier-Bishop waves we now assume that
the surface of the half-space is free from external load, so that

ta=0, t..b=0 at x,=0, (30)
for any value of the coordinatc x, and at all times ¢. To save on non-essential calculations
that tend to obscure rather than clurify the main points of the problem, we confine our
attention to the case in which the incident wave represents a P-wave. Then B, = 0 (thus
excluding the incidence of an SV-wave), and the ratios of the amplitudes of the incident
and reflected (P? and SV’) waves turn out to be

A, 0,0+ B, 2N,

B T T e T LTSRS . l
A Nr-r;° 4, Ir,-r; Gh
where

N l N N .
r. = Z C:,“’((S;S,,‘*‘ 3* S],,), r: = Z Ci,m(.‘i,, —S:,,). r; = z [Cf,‘)(s;s,, _CL/H-Z;&) Bl—‘ 32,,]‘
na=| i LE

2

Sia = . 5, =sin’

(32)

. ,k,é,na
in® —— 5, = sin

k\d;na . kna
2 2

-~
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We note that: (a) if N = 1, that is, if the particle interactions are limited to the closest
neighbors. then relations (31) become identical with those derived directly in Nowinski
[1984b. eqns (28)—(30)]: (b) if in addition one makes the interatomic distance a — 0, and
the interaction parameters C, convert into the Lamé constants, then relations (31) transform
into those well-known from the classical theory [see. e.g. Ewing et al. (1957). eqns (2.11)].

4. GOODIER-BISHOP SURFACE WAVES

Before starting a discussion of the Goodier-Bishop waves in more detail. it is worth
mentioning the unwelcome fact that for grazing incidence [as follows from the inspection
of eqns (31)]. thatis. for o, = —tan ¢, = 0. it follows that 4, = — 4, and B, = 0. and eqns
(24) cease to represent any motion at all. It was Goodier and Bishop (1952) who showed
that application of a special limiting processt reveals the existence of the trains of waves
even in this rather extreme state of affairs. We will not appeal to this process when examining
the phenomenon from the nonlocal point of view. In licu of this, we apply a simpler
procedure proposed later by Jardetzky (1952) [see also Ewing et al. (1957, p. 30)].

To do this, we return to the case of incidence of a P-wave. and try the solution of eqn
(23) in a more general form,

(X, Xat) = fxs)et e, (33)

This assumption lcads to the following difference cquation which has to be satistied by
the function f(x,):

N A+ 2u)
( n

)

n- |

9

k *
A ‘[/'(.\-:+uu)+,/'(.v:»nu)—z_r(.v:)—atsinz ‘"”]+” =0 (39
A+ 2p)a

We now pose f(xy) = ¢, and casily find the associated characteristic equation

v, bl
No4Cir I: T .,/\',uu] w®

& Gt 200 s, s, T (35)

where, as before, ¢, denotes the velocity of longitudinal waves in their local aspect. We
recall that for any harmonic wave there is

=, (36)

where ¢ is the phase velocity and k the wave vector. We then refer to eqns (1.8) and
(1.11) in Nowinski (1989), and conclude that the ratio of the squares of velocities of the
longitudinal waves in the nonlocal and local case is

. L hka
’ e o SIDC
cinonloc X CYrint 2

G & G+20a (JA-L)f '
e

-

(37)

+ According to the ad hoc assumption of Goodier and Bishop. the product A4 ¢, is to remain constant when
¢, — 0 and implicitly 4, - x.
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Keeping the three preceding equations. and the familiar trigonometric relation (i = \/ — 1.,
B real)

sinif = isin hf, (37a)
in mind we examine the following particular cases.

4.1. Classical case
In this case one has to set N = 1. and make the lattice parameter a tend to zero. By
appealing to eqns (35) and (36) one then finds that

2 12
1|.: = ik(c—;-‘l) . (38)

Since ¢ is the velocity (directed along the x -axis) of the point of intersection of the wave
front L with the x,-axis (see Fig. 1), then eqn (38) implies that x = +tan¢,. This result
coincides, as to be expected. with its classical counterpart to be found, for example, in
Ewing et al. (1957, p. 26). Inasmuch as for a grazing incidence there evidently is ¢ = ¢,
then the root of the characteristic eqn (35) becomes a double root equal to zero. On account
of this, there is

/(\:) = D| L'"‘."+'D_v.\': ¢ = )y +D:.Y:. (38a)

and we conclude that a longitudinal P-wave moving along the interface of a classical, local,
halt-space produces, in fact, a reflected longitudinal P-wave aimed in the same direction,
but with the amplitude increasing lincarly with increasing distiance from the surface. A
simultancously generated reflected SV -wave turns out to be of an ordinary kind. Both these
facts characterize the wave motion predicted by Goodier and Bishop.

4.2. Nonlocal case N = |
In this cise we again set N = 1, but appeal to eqn (37) which, for N = |1, simplifies to

. ka
sin

Crnonlue = € N_/;'/(‘[Am ¥ (39)

[compure Nowinski (1989, eqn (1.13))]. Likewise, (35) becomes

. . ka
1,y 3 sin- -
waa  atkTfe 2
ind o = e | e e 40
2 4 ¢ (40)

(5’2"!):

and for grazing incidence, on account of relation (39) and the fact that in the present case
k =k, wepget

-t

sin® 2 0. (40a)
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Table L. Force constants C4 *

C,
(10° dynes cm ™ ") C, . C, C, C. C. C. C, C,
Lead 148 49 —134 127 —09% 045 —048 027 014
[100] W6 115 130 —065 004 —0.10 —004 005
Aluminum
(110} 152 243 —I82  —07% 122 004 039 —005

This condition may be satisfied only if x = 0. irrespective of whether x is considered real or
imaginary. In fact. in the first case we may argue that the parameter x has the character of
a wave number. [f this is so. and if one wishes to remain in the first Brillouin zone, then
one is able to demand that x € n/a and x¢ 2 # nr for n = 1,2, ..., so that consequently
a = 0. This brings us back to the Goodier-Bishop solution. and excludes other possible
courses. On the other hand. if one treats x as imaginary, then eqn (37a) implies immediately
that 2 = 0 and one recovers once more the Goodter-Bishop case.

It is now of special interest to determine whether by taking higher values of the index
N than 1, it is possible to arrive at conclusions differing from those arrived at in our previous
discussion. We illustrate this point by examining successively the cases N =2 and N = 3.

4.3. Nonlocal case N =2
Let us first assume that & = 2. A simple manipulation furnishes the equation

LoaXd| L «, i
sin 5 sin 5 l+4(,‘ =), (41)

so that cither

Losaa
sin” = (), (41a)

and one comes back to the Goodier- Bishop case, or there is

, Al C
LI S !

5 Ay (41b)

sin

Whereas, in principle. there is no reason why the foregoing refation may be called in
question, some of the available experimental data make such a conclusion less free from
doubt. As an illustration, Table 1 displays the values of the force constant CY ' for two
materials, with markedly different properties. namely lead+ and aluminumi (for the latter,
in two crystal directions [100] and [110]).

A glance at Table | convinces us that the constants C¢* ¥ and C¥**" turn out to be
positive. If this is the case, then irrespective of whether x is real or imaginary constraint
(41b) is void. Conscquently, if the particle interactions are restricted to the second closest
neighbor, then the nonlocal theory confirms the existence of Goodicer-Bishop waves, and
excludes the occurrence of other undulatory motions.

tp=113and ¢, = 1230 m s 1. €, is calculated from the graph given in Fig. 15 in Kittel (1967) with
inaccuracy likely to occur in the second digit.
tp=2Tand ¢, = 5100 ms ' ¢, caleulated from Fig. 4 in Yarnell and Warren (1965) giving ¢, from the
equation
I )
= -—; ¥ (| —~cos nka).
pa' =

me
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4.4. Nonlocal case N =3
As a final example let us consider the case corresponding to N = 3. A straightforward
calculation yields the equation

sin” —[I6C,sm ——4(C3+6C )sm‘-—+(C.+4C +9C,)j| 0. (42)

In this case, either x = 0. and we recover the Goodier-Bishop solution. or x # 0 and the
remaining biquadratic equation has the solution

71} C1+6C1i[C$—4C;(C;+Cs)]':
gl _ b2 k 2 3 2 3
sin’ -5 3¢ . 43)

If we now assume as we did before. that C,, C, > 0 and add the condition that C, < 0 (see
Table 1). then the discriminant in (43) becomes greater than zero.

The upper sign in (43) then gives sin® 2a/2 < 0, and for real x constraint (43) becomes
meaningless. On the other hand, if one assumes a to be imaginary. then there is a possibility
of a wave motion whose amplitude varies exponentially with an increasing distance from
the planc x, = 0. This solution corresponds to the wave motions of the already well known
local (and recently discovered nonlocal) types named after Rayleigh [see Eringen (1973)]
and Love [sce Nowinski (1984a)}. As regards the lower sign in eqn (43). it is not difficult
to convince oncself that both for real and imaginary x eqn (43) has no sensc (at least as
regards the data given in Table 1),

4.5. Nonlocal general case
In this case the range of cohesive forees remains unrestricted.
We first rearrange eqn (35) to read

‘z”' qeérm ana _ ¢ ’Z": 4Carm s kna
hins sin? . sin?
7 +2;4)¢1‘A' i e G 2’k 2

n=t

(44)

We note that as before a grazing incidence of a P-wave implics that ¢ = ¢ pome and & = k4,
so that with due regard to eqn (37) the equation above simplifies to

n? and

}j Cii o sin® 5= = 0. 45)

One obvious solution here is 2 = 0 corroborating the findings of Goodier and Bishop. Other
solutions call for a detailed analysis of the heavily transcendental eqn (44). It need hardly
be added that if one retains the requirement that the parameter x be confined to the first
Brillouin zone, then at the right end of this zone we have

C(|A‘ + i) + C'(‘A 20 + - C+ C(4 + -u) = 0 (46)

where (21— 1) < N. Since the cquation just written cannot be satisfied for both lead and
aluminum, onc has to conclude that: (a) in general, existence of wave motion other than
that of the Goodier-Bishop type is questionable ; (b) moreover, if such a motion actually
exists it may not in general take place in the high frequency range corresponding to the
right-hand end of the Brillouin zone. So far our analysis has involved the effects of longi-
tudinal waves. All of previous arguments, however, with non-essential changes apply to the
effects of transverse waves, and to save on space, we refrain from setting them down here.
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5. CONCLUSIONS

The following conclusions summarize the main points of the present study:

(a) The nonlocal theory confirms the findings of the classical approach and finds the
grazing incidence of a P-wave (respectively. an SV-wave) on a free surface of a half-space
to produce a reflected Goodier-Bishop P-wave. This state of affairs is observed at least
according to some of the available experimental data, and in media in which the cohesion
reaches up to the third closest particle.

(b) In the last named case, the nonlocal theory predicts an additional generation of
the waves of the Rayleigh and Love type not anticipated by the classical theory.

(c) The conclusions above relate to waves in question of any length (from infinitely
long to as short as twice the interatomic distance) but it is doubtful whether high frequency
(i.e. very short) waves of this kind may appear in media with particle interactions far distant
in space. All this is true within the framework of the nonlocal theory, since—we repeat—
the validity of the classical theory is limited to the range of very (infinitely) long waves.

(d) Taking all said into consideration, it is fair to conclude that the nonlocal model of
elastic behavior does not contradict the phenomenon established by Goodier and Bishop.
and seems to substantiate the fact that Goodier—-Bishop’s findings are not necessarily a
strictly formal product of some inadequacies of the postulational basis of the classical
theory of clasticity.
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